Domain Annotation: ECOD Classification ECOD Database Homepage

ChainsFamily NameDomain Identifier ArchitecturePossible HomologyHomologyTopologyFamilyProvenance Source (Version)
AHis_Phos_1e4ij5A1 A: a/b three-layered sandwichesX: Phosphoglycerate mutase-like (From Topology)H: Phosphoglycerate mutase-like (From Topology)T: Phosphoglycerate mutase-likeF: His_Phos_1ECOD (1.6)
BHis_Phos_1e4ij5B1 A: a/b three-layered sandwichesX: Phosphoglycerate mutase-like (From Topology)H: Phosphoglycerate mutase-like (From Topology)T: Phosphoglycerate mutase-likeF: His_Phos_1ECOD (1.6)

Domain Annotation: CATH CATH Database Homepage

ChainDomainClassArchitectureTopologyHomologyProvenance Source (Version)
A3.40.50.1240 Alpha Beta 3-Layer(aba) Sandwich Rossmann fold Phosphoglycerate mutase-likeCATH (4.3.0)
B3.40.50.1240 Alpha Beta 3-Layer(aba) Sandwich Rossmann fold Phosphoglycerate mutase-likeCATH (4.3.0)

Protein Family Annotation Pfam Database Homepage

ChainsAccessionNameDescriptionCommentsSource
A, B
PF00300Histidine phosphatase superfamily (branch 1) (His_Phos_1)Histidine phosphatase superfamily (branch 1)The histidine phosphatase superfamily is so named because catalysis centres on a conserved His residue that is transiently phosphorylated during the catalytic cycle. Other conserved residues contribute to a 'phosphate pocket' and interact with the p ...The histidine phosphatase superfamily is so named because catalysis centres on a conserved His residue that is transiently phosphorylated during the catalytic cycle. Other conserved residues contribute to a 'phosphate pocket' and interact with the phospho group of substrate before, during and after its transfer to the His residue. Structure and sequence analyses show that different families contribute different additional residues to the 'phosphate pocket' and, more surprisingly, differ in the position, in sequence and in three dimensions, of a catalytically essential acidic residue. The superfamily may be divided into two main branches. The larger branch 1 contains a wide variety of catalytic functions, the best known being fructose 2,6-bisphosphatase (found in a bifunctional protein with 2-phosphofructokinase) and cofactor-dependent phosphoglycerate mutase. The latter is an unusual example of a mutase activity in the superfamily: the vast majority of members appear to be phosphatases. The bacterial regulatory protein phosphatase SixA is also in branch 1 and has a minimal, and possible ancestral-like structure, lacking the large domain insertions that contribute to binding of small molecules in branch 1 members.
Domain

Gene Ontology: Gene Product Annotation Gene Ontology Database Homepage

ChainsPolymerMolecular FunctionBiological ProcessCellular Component
A, B
Phosphoserine phosphatase 1